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Multi-ancestry genome-wide association 
study of cannabis use disorder yields insight 
into disease biology and public health 
implications

As recreational use of cannabis is being decriminalized in many places 
and medical use widely sanctioned, there are growing concerns about 
increases in cannabis use disorder (CanUD), which is associated with 
numerous medical comorbidities. Here we performed a genome-wide 
association study of CanUD in the Million Veteran Program (MVP), followed 
by meta-analysis in 1,054,365 individuals (ncases = 64,314) from four broad 
ancestries designated by the reference panel used for assignment (European 
n = 886,025, African n = 123,208, admixed American n = 38,289 and East 
Asian n = 6,843). Population-specific methods were applied to calculate 
single nucleotide polymorphism-based heritability within each ancestry. 
Statistically significant single nucleotide polymorphism-based heritability 
for CanUD was observed in all but the smallest population (East Asian). 
We discovered genome-wide significant loci unique to each ancestry: 22 
in European, 2 each in African and East Asian, and 1 in admixed American 
ancestries. A genetically informed causal relationship analysis indicated a 
possible effect of genetic liability for CanUD on lung cancer risk, suggesting 
potential unanticipated future medical and psychiatric public health 
consequences that require further study to disentangle from other known 
risk factors such as cigarette smoking.

Cannabis is a psychoactive substance with a long history of use and 
dependence. Recently within the United States, 37 states have approved 
what is termed medical cannabis use, and 19 states, 2 territories and 
the District of Columbia allow possession of cannabis for recreational 
purposes. In Europe, only Malta has fully legalized recreational canna-
bis, although many other countries have decriminalized possession of 
small amounts of cannabis and have enabled medical allowances. It was 
recently legalized in Thailand but remains prohibited in many parts of 
Asia, the Middle East and South America. The status in many of these 
places may be subject to change in the near future. More than a third of 
individuals who use cannabis develop cannabis use disorders (CanUD), 
and evidence regarding the impact of legalization on escalating use 

and use disorders is mixed1,2. Substantial negative health outcomes 
associated with chronic cannabis use include various cancers associ-
ated with inhaling combustion products3, declines in cognitive capacity 
and motivation and increased schizophrenia (SCZ) risk4,5. Individual 
and societal complications that result from CanUD include decreased 
productivity and accidents related to intoxication6. The full range of 
risks and negative outcomes associated with cannabis use and CanUD 
may not be appreciated widely. Considering the gradually increasing 
permissiveness surrounding its use, understanding various sources of 
risk that influence CanUD is both necessary and timely.

In this Article, we combined genome-wide genotype data from the 
Million Veteran Program (MVP) with expanded samples from iPSYCH27,8 
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far stronger overlap with pathological and negative traits (Fig. 2). The 
largest magnitude difference was in educational attainment, which 
showed a positive correlation with cannabis use but a negative correla-
tion with CanUD. Covariate LDSC was used to calculate SNP-based herit-
ability within each ancestral group. Significant SNP-based heritability 
was identified for the three larger ancestries: EUR h2 = 6.7% (standard 
error (s.e.) = 0.017), AFR h2 = 8.1% (s.e. = 0.013), and AMR h2 = 18.0% 
(s.e. = 0.042). There was high variance and a high point estimate in 
AMR. LDSC was used to calculate genetic correlation between cannabis 
use dependence cohorts included in this meta-analysis and also within 
MVP phenotype definitions (Supplementary Table 1). Genetic correla-
tions were calculated for 1,335 traits (Fig. 2 and Supplementary Fig. 2). 
The strongest observed positive correlations were related to smoking 
initiation and alcohol dependence, while the strongest negative cor-
relations were with ages of first intercourse and smoking cessation.

Cross-ancestry genetic correlation
Genetic correlations were calculated against available traits using 
POPCORN19 for CanUD in African ancestry and a selection of traits 
represented in Fig. 2. When compared to the same traits in EUR, there 
is no significant difference across ancestries (Supplementary Fig. 3).

Mendelian randomization
Multi-site chronic pain had a unidirectional causal effect on CanUD 
(inverse variance-weighted (IVW) β = 0.46, P = 2.90 × 10−5). There was a 

and Mass General Brigham (MGB) BioBank9 and meta-analyzed these 
with the Psychiatric Genomics Consortium (PGC)/deCODE/iPSYCH1 
study7,10. MVP, one of the largest biobanks in the world11, has enabled a 
substantial increase in power for genomic discovery by doubling the 
number of cases of European (EUR) ancestry available. By increasing 
sample numbers, we substantially increased the number of discovered 
loci and confirmed previous findings7,10. We also leveraged the ances-
tral diversity of the MVP to expand analyses of African ancestry indi-
viduals (AFR) and conducted genome-wide association studies (GWAS) 
analyses in Admixed American (AMR) and East Asian (EAS) ancestries. 
Linkage disequilibrium (LD) score regression (LDSC) can quantify vari-
ance explained by genetics and identify overlap between traits. This 
method is sufficient for EUR ancestries but not appropriate for some 
non-European and admixed ancestries. To solve this problem, we used 
cohort-derived covariate LDSC12 to calculate single nucleotide poly-
morphism (SNP)-based heritability in these populations, finding similar 
results among all ancestries. We conducted a transcriptome-wide 
association study (TWAS), which leverages annotations based on vari-
ant associations to changes in gene expression, in adult and fetal brain 
tissue to identify significant expression quantitative trait loci (eQTLs), 
using stratified LDSC to show enriched SNP-based heritability in fetal 
but not adult cortex. We also conducted Mendelian randomization 
(MR) analyses—an approach that uses genetic variations identified 
by GWAS as instruments to obtain an unbiased estimate of the effect 
of a trait of interest (here, CanUD) on outcomes—to examine causal 
relationships with chronic pain, lung cancer, physical activity and 
SCZ. Finally, we performed genomic structural equation modeling 
(gSEM)—a multivariate method for analyzing GWAS summary statis-
tics to examine joint genetic architecture of traits—to understand the 
genomic relationships between cannabis use traits and other psychi-
atric and substance use disorder (SUD) traits. This work builds upon a 
decade of progress in the field7,10,13–18.

Results
GWAS
We assembled a total sample of 886,025 EUR participants across 
five datasets (Table 1; 42,281 cases and 843,744 controls) for GWAS 
meta-analysis of CanUD and identified 22 independent genome-wide 
significant (GWS) loci in this population. In the AFR meta-analysis of 
123,208 participants across three cohorts (19,065 cases and 104,143 
controls), we identified two GWS loci. In a cohort of 38,289 participants 
assigned using the broad AMR ancestry references (which include indi-
viduals recruited from several Latin American populations) in the MVP 
cohort (2,774 cases and 35,515 controls) we found one GWS locus, and 
in EAS ancestry references we identified two GWS loci. The lead signal 
for EUR was near CHRNA2 (rs56372821, P = 7.3 × 10−14), which encodes 
cholinergic receptor nicotinic alpha 2 subunit, consistent with prior 
GWAS7,10; the lead SNP was identical to one prior study7. Findings for 
AFR include a SNP in an intron of SLC36A2 (rs573117193, P = 4.9 × 10−8), 
which encodes a pH-dependent proton-coupled amino acid transporter 
for glycine, alanine and proline. The lead SNP in AMR was rs9815757 
(P = 4.4 × 10−8). The lead SNP in EAS (rs78561048, P = 6.7 × 10−9) is  
intronic to SEMA6D, which encodes semaphorin 6D (Fig. 1 and Table 2).  
Several variants showed concordant direction of effect across all four 
stratified ancestral groups. Five additional loci were discovered in the 
multi-ancestry analysis: rs7003100 (intergenic), rs7029483 (130 kb 
upstream of MTND2P8), rs2627197 (intronic to ENO4), rs34438449 
(40 kb downstream of MIR5007) and rs147144681 (intronic to CHRNA3).

LDSC
Intergroup comparisons between EUR CanUD cohorts (MVP, PGC/
deCODE, iPSYCH2) included in the meta-analysis yielded high genetic 
correlation, with rG ranging between 0.71 and 0.87. Comparative analy-
sis of CanUD and cannabis use traits with a range of psychiatric and 
nonpsychiatric traits revealed striking differences, with CanUD showing 

Table 1 | Demographics

Population Cohort Status n Totals Effective

EUR

PGC+deCODE
Case 14,522

313,463 55,397
Control 298,941

MVP
Case 22,260

445,847 84,594
Control 423,587

iPSYCH2
Case 4,733

100,390 18,039
Control 95,657

MGB
Case 456

24,544 1,790
Control 24,088

Yale–Penn 3
Case 310

1,781 1,024
Control 1,471

Total
Case 42,281

886,025 161,053
Control 843,744

AFR

PGC
Case 3,848

9,745 9,314
Control 5,897

MVP
Case 14,946

112,526 51,843
Control 97,580

Yale–Penn 3
Case 271

937 770
Control 666

Total
Case 19,065

123,208 64,460
Control 104,143

AMR MVP

Case 2,774

38,289 10,292

Control 35,515

EAS MVP
Case 194

6,843 754
Control 6,649

PGC is not a single cohort but comprises several individual cohorts, as described10
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bidirectional causal effect of CanUD and SCZ (SCZ→CanUD IVW β = 0.17, 
P = 2.07 × 10−5, CanUD→SCZ IVW β = 0.17, P = 0.01). CanUD showed a 
unidirectional effect on lung cancer (IVW β = 0.18, P = 0.006) (Sup-
plementary Fig. 1 and Supplementary Tables 5–13).

Conditional analysis
For EUR, we performed a multi-trait conditional and joint analysis 
(mtCOJO) of CanUD conditioned on two smoking traits from the 
GWAS and Sequencing Consortium of Alcohol and Nicotine use study 
to investigate potential confounding effects20. Two different datasets 
were used: smoking initiation and cigarettes per day. Individual runs 
were performed for the two cigarette smoking traits. A proportion of 
18 of 22 original lead SNPs remained in the dataset following condi-
tioning on smoking initiation (meaning they matched with variants 
in the conditioning data). For two out of four remaining SNPs, there 
were proxy SNPs in LD with each lead SNP showing GWS P values. Only 

rs545943750 and rs184064410 were excluded after conditioning due 
to missingness in the smoking data, leaving 20 of 22 lead loci from the 
CanUD GWAS available in the conditional analysis. All 20 remained 
GWS following conditioning. The results were similar with CanUD con-
ditioning on cigarettes per day, with the same 20 lead loci remaining 
GWS after conditioning. Conditional analysis with smoking initiation 
or cigarettes per day did not substantially alter the magnitude of the 
lead CHRNA2 association (Pcond = 2.14 × 10-14). We used these summary 
statistics conditioned on cigarette smoking initiation to re-test the  
causal relationship between CanUD and lung cancer, and while the 
signal attenuated, it was still significant (IVW β = 0.2, P = 0.0025). 
The conditional analysis with cigarettes per day, however, removed  
the effect of CanUD on lung cancer (P = 0.79).

Multi-trait analysis of GWAS
Considering the high genetic correlation of CanUD with alcohol use 
disorder (AUD) and the Fagerström Test for Nicotine Dependence 
(FTND), we conducted an multi-trait analysis of GWAS (MTAG) analy-
sis that identified 34 lead SNPs at 26 genomic risk loci, including four 
novel loci compared to the EUR meta-analysis, at P < 5 × 10−8 for CanUD 
(Supplementary Fig. 5 and Supplementary Table 14) when combined 
with AUD and FTND. The GWAS-equivalent sample size for CanUD was 
200,762, augmenting the meta-analysis effective sample size of 161,053 
by 20%. Ten genomic risk loci were significant (or in LD with significant 
variants) in both the GWAS and MTAG analyses. The remaining 16 sig-
nificant variants were LD independent. The effect size of eight of the 
26 significant SNPs in the MTAG analysis was significantly smaller than 
those obtained from the original GWAS (Supplementary Table 15), 
suggesting specificity to CanUD.

Transcriptome-wide association study
In TWAS analyses, 59 and 25 genes were detected (P < 2.5 × 10−6) using 
adult and fetal brain frontal cortex expression, respectively, with six 
genes in common (Fig. 3a). We tested these genes by permutation 
test, leaving 44 and 17 genes using adult and fetal models, with two 
genes in common (Fig. 3a). For the remaining genes within 1 Mb of one 
another, we applied gene-level probabilistic fine-mapping. In the end, 
we detected 36 and 15 genes using the adult and fetal models, which 
form 90% credible sets (with 90% estimated probability of containing 
the causal variant) that explain the corresponding genetic associations  
(Fig. 3a, b). These sets contained only one gene in common: DALR 
Anticodon Binding Domain Containing 3 (DALRD3) (Fig. 3a, b). The 
observed gene associations included four distinct GWAS loci: 3p21.31 
(gene detected in adult and fetal brain cortex: DALRD3), 5q12.1 (fetal: 
ERCC8), 11q23.2 (adult: RP11-629G13.1) and 16q22.2 (adult: PHLPP2). 
Protein functions of these genes are described in the Discussion below. 
The remaining set of genes identifies 38 candidate novel genetic loci 
associated with CanUD, with potential underlying transcriptomic mech-
anisms in either adult or fetal brain cortex (Supplementary Table 3).

Partitioned SNP-based heritability
Standardized TWAS effect sizes estimated using adult and fetal brain 
frontal cortex expression models showed moderate correlation (Spear-
man’s ρ = 0.54, P < 2.2 × 10−16; Fig. 3c). Accordingly, we next estimated 
the SNP-based heritability enrichment in adult and fetal brain cortex 
eQTL. Using LDSC, we estimated enrichment ratios for SNP-based herit-
ability using different windows around expression SNPs for expression 
genes. We detected significant enrichments only for fetal brain frontal 
cortex expression SNPs at windows of 0 bp, 50 bp and 100 bp. In general, 
fetal brain frontal cortex eQTLs were far more enriched for CanUD trait 
heritability than adult brain cortex eQTLs (Fig. 3d).

gSEM
Using exploratory factor analysis (EFA), a four-factor model fit the data 
best, with the cumulative variance explained being 0.789, distributed 
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Fig. 1 | Stacked Manhattan plots depicting CanUD GWAS results from four 
ancestries tested. From top to bottom, 2 loci were identified in EAS ancestry, 1 for 
AMR, 2 for AFR, and 22 for EUR (red dots). Nearby genes are shown for orientation. 
P values were calculated with bidirectional Wald’s test. The field standard GWS 
threshold of P < 5 × 10−8 (horizontal red line) was used to determine significant 
associations. Other colors indicate different chromosomes. Chr, chromosome.
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relatively evenly across the four factors, with each accounting for 
between 22.7% and 29.2% of the overall variance explained (factor 1 of 
0.23, factor 2 of 0.19, factor 3 of 0.18 and factor 4 of 0.18). Each of the 
four factors had high sums of square (SS) loadings (factor 1 SS of 3.5, 
factor 2 SS of 2.9, factor 3 SS of 2.8 and factor 4 SS of 2.7).

Using confirmatory factor analysis (CFA) to evaluate the 
four-factor model that allowed all factors to intercorrelate had a com-
parative fit index of 0.913, a standardized root mean square residual 
of 0.068, a chi-squared value of 1397.5 and an Akaike information cri-
terion of 1483.5. Traits loading most strongly on factor 1 included 
‘Unable to work’ (loading of 1.06 ± 0.04), Townsend deprivation index 
(loading of 0.56 ± 0.03), chronic pain (loading of 0.50 ± 0.04) and 
FTND (loading of 0.45 ± 0.07). Traits loading most strongly on factor 
2 included number of sex partners (loading of 0.91 ± 0.02), cannabis 
use (loading of 0.70 ± 0.03) and initiation of regular smoking (loading 
of 0.58 ± 0.03). Psychiatric traits loaded most strongly on factor 3 and 
included major depressive disorder (MDD) (loading of 0.95 ± 0.02), 
post-traumatic stress disorder (PTSD) checklist score (PCL) total (load-
ing of 0.88 ± 0.04), generalized anxiety disorder symptoms (loading 
of 0.86 ± 0.03), suicide attempt (loading of 0.59 ± 0.05) and SCZ (load-
ing of 0.29 ± 0.02). SUD traits loaded most strongly on factor 4 and 
included CanUD (loading of 0.96 ± 0.03), opioid use disorder (loading 
of 0.85 ± 0.05) and AUD (loading of 0.81 ± 0.03). There were moderate 
correlations between factors 2 and 4 (r = 0.65), factors 1 and 3 (r = 0.64), 

factors 1 and 4 (r = 0.52) and factors 3 and 4 (r = 0.53). All correlations 
and loadings are summarized in Fig. 4.

Discussion
Recently, cannabis use has been legalized in various US states and else-
where without fully examining the health consequences of individual  
or societal risks. An epidemiologic survey conducted by the National 
Survey on Drug Use and Health in the United States identified a past-year 
cannabis use prevalence of 17.5%, an increase from 11.0% in 2002, and 
1.8% with CanUD, the same percentage recorded in 2002. Usage varies 
worldwide, with many regions of high prevalence21.

The findings we report here add to our understanding of CanUD 
biology on many levels. First, we greatly increased the available sample 
size for genomic analysis, mostly by incorporating MVP data, and iden-
tified multiple novel risk loci in four populations, improving on previ-
ous results in EUR by more than an order of magnitude and presenting 
the first genetic discoveries in the other populations studied. Using 
the GWAS data, we then showed overlapping genetic liability to other 
traits. Next, investigating how genetic variation underlying CanUD 
influences fetal brain gene expression, the brain in particular showed 
significant enrichment for SNP-based heritability. Essentially, SNPs that 
influence fetal brain gene expression explain a greater proportion of 
CanUD phenotypic variance than the overall GWAS association of all 
SNPs. We investigated the overlapping and shared underlying genetic 

Table 2 | Lead SNP for each ancestral group

RSID POS Allele+ Allele− EUR P AFR P AMR P EAS P Effect

rs7519259 1:66434743 A G 1.83 × 10−9 0.08 0.94 0.31 +++−

rs6690119 1:73580964 T C 5.00 × 10−8 0.23 0.57 0.41 ++−+

rs1526480 1:91209986 T C 5.91 × 10−10 0.17 0.61 0.22 −+−

rs719504 2:22918025 A G 2.53 × 10−8 0.32 n/a n/a +−XX

rs184064410 3:43992164 T C 1.20 × 10−8 n/a 0.36 n/a +X+X

rs3774800 3:49334768 A G 1.72 × 10−12 0.96 0.07 0.16 −+

rs17007864 3:70876858 T C 1.05 × 10−9 0.72 0.82 0.99 ++−+

rs726610 3:85551403 T C 4.29 × 10−11 0.13 0.23 0.38 −+

rs201175241 4:47126053 G GA 1.77 × 10−8 0.47 0.05 0.63 +−+−

rs56070621 5:30825684 A T 1.15 × 10−8 0.17 0.99 0.09 ++−+

rs159365 5:60500273 A G 3.33 × 10−8 0.96 0.5 0.84 +−++

rs9344740 6:88619412 T G 8.34 × 10−10 0.01 0.4 0.26 −−−−

rs62461183 7:77716309 T C 5.86 × 10−10 0.37 0.43 0.85 +++−

rs2189010 7:114000000 A G 1.28 × 10−8 n/a 0.08 n/a +X+X

rs545943750 8:16059558 A AT 1.45 × 10−8 n/a n/a n/a −XXX

rs56372821 8:27436500 A G 7.27 × 10−14 0.17 0.93 n/a −+−X

rs10986600 9:128000000 T C 2.17 × 10−10 0.04 0.03 0.25 +++−

rs200595759 10:119000000 T TATA 1.42 × 10−8 n/a n/a n/a −XXX

rs6484345 11:27996573 A G 1.63 × 10−8 n/a n/a n/a +XXX

rs34554234 11:113000000 G GC 2.20 × 10−9 0.18 0.41 0.74 −−−−

rs80030908 13:55159898 A G 2.13 × 10−8 0.27 0.43 n/a +++X

rs62051488 16:72652784 A C 2.98 × 10−8 0.43 0.58 0.27 −−−−

rs78561048 15:47805135 A G 0.38 0.81 0.85 6.71 × 10−9 +–+

rs9815757 3:26809488 T C n/a 0.61 4.36 × 10−8 n/a X+−X

rs574008891 5:70933608 T C n/a 2.68 × 10−8 n/a n/a X+XX

rs573117193 5:150713922 A G n/a 4.90 × 10−8 n/a n/a X+XX

P value listed from left to right. Effect indicates the effect allele for each ancestry. GWS results are bold; cross-ancestry concordant effect is marked by italicized P values. If SNP is not present, 
n/a is reported.
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architectures of several different traits and employed MR to demon-
strate putative causal relationships between outcomes with substantial 
impact on human health, including an association with lung cancer risk. 
Cannabis is frequently consumed using methods involving inhaling 
combustion products, potentially exposing users to risks similar to 
those found in smoking other substances such as tobacco. Indeed, 
some of the shared genetic risk between CanUD and tobacco smoking 
may relate to propensity to smoke per se, independent of substance, a 
hypothesis that we currently lack the power to evaluate.

We identified 22 significant loci, most of them novel, for CanUD 
in EUR. We also replicated findings in CHRNA2 (meta P = 7.3 × 10−14, 
MVP only P = 1.1 × 10−5) and FOXP2 (meta P = 1.7 × 10−8, MVP only 
P = 2.0 × 10−3), with triple the effective sample size of the largest of those 
studies10, demonstrating once again the stability of GWAS findings as 
sufficient sample size and power to discover new loci are reached22,23. 
We discovered GWS loci in four ancestral groups: EUR, AFR, AMR and 
EAS. In AFR, two independent SNPs were associated on chromosome 5. 
The first (rs574008891) was within an intron of the gene that encodes 
methylcrotonyl-CoA carboxylase subunit 2 (MCCC2). The other sig-
nificant locus (rs573117193) mapped to an intron in the solute car-
rier family 36 member 2 (SLC36A2) gene. These specific variants are 
absent in the other ancestries studied. For AMR, the one risk locus 
was rare (rs9815757, minor allele frequency (MAF) 0.1%) and mapped 
in an intergenic region downstream of leucine rich repeat containing 
3B (LRRC3B). Finally, for EAS, one locus was associated with CanUD: 
rs78561048, near semaphorin 6D (SEMA6D). Follow-up analysis in larger 
samples is needed to assess the robustness of findings, particularly 
in AMR and EAS. Several variants showed concordant direction of 
effect across all four stratified ancestral groups (Table 1). For instance, 

rs10986600, significantly associated in EUR on chromosome 9, was 
nominally significant (P < 0.05) with same effect direction in AFR (0.04) 
and AMR (0.03) and significant in the multi-ancestry meta-analysis. 
This intronic variant of the protein phosphatase 6 catalytic subunit 
(PPP6C) is an eQTL for PPP6C, a gene linked to various cancers, includ-
ing skin melanoma and lung squamous cell carcinoma. Multi-ancestry 
meta-analysis revealed an additional five loci not identified in the 
stratified analyses. Among them, the lead SNP on chromosome 15, 
rs147144681, which maps to an intron of the cholinergic receptor nico-
tinic alpha 3 subunit (CHRNA3) gene, is particularly noteworthy; as 
reported above, variation in CHRNA2 was among the first variants 
associated with CanUD and was replicated here. This suggests potential 
convergence involving the cholinergic system broadly and nicotinic 
receptors, specifically in the underlying etiology of CanUD. While 
nicotinic receptors are also associated with tobacco smoking-related 
traits24, the relative pattern of association for those traits is different 
from the observations for CanUD—for many smoking-related traits, 
a chromosome 15 nicotinic receptor cluster is associated with orders 
of magnitude greater support than other variants, including other 
nicotinic receptors; for CanUD, CHRNA2 is consistently the strongest 
association, also by orders of magnitude. We conducted conditional 
analysis for CHRNA2 and found the conditional P value remained robust 
following conditioning on smoking initiation20 (Pcond = 4.6 × 10−14). 
This replicates similar analyses performed by Demontis et al.7 and 
Johnson et al.10, which showed conditioning on smoking did not affect 
the CanUD association at this variant. Several other loci near cho-
linergic receptor subunit genes previously identified for smoking 
are not significant in our analysis of CanUD (CHRNA4, rs13036436, 
smoking P = 1.1 × 10−29, CanUD P = 0.97; CHRNA5, rs667282, smoking 

EA Unable to
work

PCL—
arousal

Chronic
pain MDD PCL–avoid PCL - ReExp Physical

activity Anxiety AUD Suicide Opioid use
disorder

Sexual
partners AUDIT-C FTND TDI SCZ Smoking

initiation

CanUD –0.3632 0.5297 0.4019 0.3496 0.4565 0.4065 0.3779 –0.4358 0.3719 0.6908 0.6285 0.7758 0.5634 0.0827 0.4165 0.5754 0.3724 0.6082
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Fig. 2 | Genetic correlations. Comparison of genetic correlations between 
CanUD and cannabis use18. Left axis depicts the range of rG between 1 and −1. 
Red bars and blue bars depict the rG point estimate per trait for CanUD and 
cannabis use, respectively. Black error bars represent the standard error. Right 
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comparison trait is included in the table. EA, educational attainment; ReExp, 
re-experience; AUDIT-C, Alcohol Use Disorders Identification Test-Consumption; 
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P = 9.9 × 10−25, CanUD P = 0.043). Conversely, the CHRNA3 variant we 
find associated with CanUD is not significant for smoking (rs147144681, 
smoking P = 0.0033, CanUD P = 3.3 × 10−8) (ref. 20).

Genetic correlations were calculated for 1,335 traits to identify 
genetic overlap with CanUD. Some traits with significant rG were tested 
for causal inference based on a combination of significant genetic cor-
relation and a prior interest in phenotype (physical activity, multi-site 
chronic pain, Alzheimer’s disease and SCZ). We identified a bidirec-
tional causal relationship between CanUD and SCZ. At the same time, 
the MR Egger analysis indicated this was not due to horizontal pleiot-
ropy. This supports similar findings reported previously, confirming 
previous genetic–epidemiologic studies25 and verifying an important 
public health risk associated with CanUD. To highlight differences 
between cannabis use and CanUD, we compared the pattern of genetic 
correlations across 18 traits, which showed striking differences. CanUD 
was much more closely associated with psychopathology, recapit-
ulating a general pattern seen with other comparisons of SUD and 
use traits26. For example, while we observed a substantial negative 

correlation between CanUD and educational attainment, cannabis 
use was associated with greater educational attainment. POPCORN 
was used to generate a cross-covariance score to allow for compari-
son of traits across ancestries using genetic correlations for EUR and 
AFR groups (Supplementary Fig. 3). We found a striking similarity for 
cross trait comparisons for both groups, indicating a similar under-
lying genomic architecture. This finding supports the possibility that 
some findings uncovered so far for EUR individuals, recruited in vastly 
greater numbers for genetic study, will provide some degree of gener-
alizability across human populations.

Chronic pain may be a factor driving CanUD in some individuals, 
with significant unidirectional evidence for a causal effect of chronic 
pain27 on CanUD in the MR analysis. Cannabis use has been proposed 
as a treatment for chronic pain, and there are several clinical trials 
in progress28. This MR observation suggests that there may be merit 
in cannabis as a treatment for at least some kinds of pain. The small 
overall beneficial effect observed requires so many individuals to be 
treated that harmful effects (such as increased CanUD) also become 
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a significant factor29. Our MR results suggesting that chronic pain has 
a causal influence on CanUD emphasize the need for follow-up inves-
tigations that address whether greater consideration should be given 
to the adverse effects, rather than just the therapeutic effects among 
individuals receiving cannabis-based medicines. A similar question 
arises with opioids, which although often prescribed for pain, can also 
cause great harm30: namely, what level of risk of CanUD is acceptable 
given cannabis’ potential to improve quality of life and reduce opioid 
exposure in chronic pain patients? Our results suggest that harms such 
as dependence and consequences, reflected in underlying genetics of 
the trait, may need to be weighed against the potential benefits of can-
nabis treatment for chronic pain. Future studies should consider this 
novel relationship to pain31 and clinical efficacy trials are underway.

Cigarette smoking substantially increases the risk of many forms 
of cancer, including lung cancer, through numerous well-studied mech-
anisms with established literature dating back more than 60 years32. 
The influence of cannabis on cancer risk is less well understood; it 
should be anticipated that these combustion products could have 
harmful pulmonary impacts—indeed, it would be surprising if smoking 
tobacco, but not smoking cannabis, increased cancer risk. MR yielded 
evidence for a unidirectional causal effect of CanUD on lung cancer. 
This result was robust to conditioning on data from the largest avail-
able smoking initiation GWAS but not conditioning on cigarettes per 
day, both traits that also have causal relationships with lung cancer 
but far more robust genetic instruments to evaluate this relationship. 
We do not currently have a way to assess genetic variation associated 
with the route of cannabis administration, but combustion is by far 
the most common method in the MVP and other cohorts studied. 
Given the trend toward increased legalization and usage, this apparent 

causal association needs to be monitored as it may have profound and 
underappreciated public health consequences. As the causal relation-
ship with CanUD was not robust to conditioning on cigarettes per day, 
one probable explanation may be that there is horizontal pleiotropy 
between these traits in their influence on lung cancer.

Four GWS loci overlapped with TWAS prioritization from the EUR 
meta-analysis, using eQTL integration from samples of adult33 and 
fetal34 cortical tissue. These were DALRD3 (both fetal and adult), ERCC8 
(fetal), RP11-629G13.1 (adult) and PHLPP2 (adult). The DALRD3 protein 
product, a DALR anticodon binding domain, forms a complex with the 
product of METTL2B. Nonsense mutations in DALRD3 are associated 
with developmental delay and early-onset epileptic encephalopathy35. 
ERCC8 encodes the excision repair 8, CSA ubiquitin complex subunit, 
which plays a role in DNA repair and is associated with the developmen-
tal disorder Cockayne syndrome36, as well as breast, esophageal and 
other cancers37,38. RP11-629G13.1 is a long noncoding RNA associated 
with downregulation of NCAM1 gene expression in multiple myeloma 
patients39. Significant partitioned SNP-based heritability was observed 
in fetal but not in the adult cortex, with 4.36% of trait SNP-based herit-
ability explained by 0.12% of the total SNPs near fetal frontal cortex 
eQTLs. Only 1.77% of CanUD SNP-based heritability was explained 
using 0.13% of the total SNPs near adult cortex eQTLs. Fetal develop-
ment may play a role in SUD susceptibility40, and substance use can 
influence fetal development during pregnancy and health outcomes 
during childhood41. Although exogenous exposure to cannabis may 
not occur until years or decades after birth, enriched fetal SNP-based 
heritability in this study argues a possible role for genetic effects on 
CanUD in the developing brain independent of exposure. SCZ risk is 
also modulated by risk factors during fetal development42 and genetic43 
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and environmental effects (including maternal food deprivation in the 
first trimester of pregnancy44). Temporal convergence of the initiation 
of genetic risk effects for both SCZ and CanUD, if validated experimen-
tally, would provide insight into the genetic relationship between these 
disorders and could relate to a mechanism for the bidirectional risk 
relationship between cannabis use and SCZ.

gSEM was used to contextualize summary statistics from this 
project with those from other published GWAS studies. Exploratory 
and confirmatory factor analyses showed that four factors provide 
the best fit for the 14 correlated traits included in the analysis. Factors  
fit mostly into categories that relate to functional impairment (factor 1),  
impulsivity and risk taking (factor 2), psychopathology (factor 3) and 
substance dependence (factor 4). CanUD fit best (and strongly) in 
the substance dependence cluster (factor 4). FTND fit into factors for 
functional impairment and substance dependence. Suicide attempts fit 
into functional impairment, impulsivity/risk taking and psychopathol-
ogy. This is consistent with research showing overlapping pathologies 
within addiction and shared genetic risk factors between them45.

This study has limitations. The use of electronic health records allows 
for a large sample of CanUD cases but limits the assessment of subdiag-
nostic cannabis use in controls. Although we accounted for subdiagnostic 
cannabis users by excluding them from controls when information was 
available, these are probably underreported. Future studies of individuals 
with ascertained cannabis use who do not meet criteria for CanUD would 
provide more insight into the specific genetic liability to dependence. As 
the traits of interest were gathered from previously published reports or 
queries of electronic health records (EHRs) for diagnostic codes, we did 
not have information regarding tetrahydrocannabinol (THC) blood levels 
or information on the potency of cannabis at each exposure. If these data 
were available, study of effects on cannabis potency on dependence and 
comorbidities would be of great interest. We identified a causal relation-
ship between multi-site chronic pain and CanUD. As pain is a complex 
trait and different type of pain may interact differently with CanUD, our 
finding for multi-site chronic pain is not sufficient to draw conclusions 
about the interaction between CanUD and specific kinds of pain or pain 
syndromes. Our definition of CanUD was based on any report of abuse or 
dependence either as an inpatient or outpatient. Participants in this study 
span a period of changing legal status and increasing use of marijuana, a 
major secular trend. Given the age of the participants (Supplementary 
Table 16) and expected time from initial exposure to the development of a 
use disorder, nearly all participants would have been exposed to cannabis 
before legalization. The TWAS study did not include ascertainment for 
CanUD in the individuals who donated brain tissue used for analysis. We 
discovered GWS loci in ancestral groups, but AFR, AMR and EAS sample 
sizes were small compared to EUR. We did not perform MR or TWAS analy-
ses in non-European samples because available GWAS and eQTL datasets 
are still limited in non-European ancestry populations, and cross-ancestry 
analyses carry risk of biases due to differences in the underlying LD struc-
ture between ancestries. More studies are needed of individuals of diverse 
ancestries to replicate these findings, estimate their robustness and ensure 
that the benefits provided by these studies are available to all people.

This is the largest genetic study of CanUD so far, including data 
from multiple international cohorts in more than one million partici-
pants and comprising four ancestral groups. We replicate two prior 
GWS findings while identifying 25 novel loci, and we leverage these 
novel data to investigate genetic overlap with other traits. We identify a 
clear difference between cannabis use and CanUD, with genetic liability 
to CanUD being much more closely associated with psychopathology 
and disability. We found greater heritability enrichment in fetal than 
adult brain tissue, supporting an important role of development in 
laying the biological basis for CanUD. We used MR to assess causal rela-
tionships and found evidence of bidirectional causal effects between 
CanUD and SCZ and unidirectional effects of multi-site chronic pain 
on CanUD, and of CanUD on lung cancer. Finally, using gSEM, we found 
that CanUD loads on a latent factor with other substance dependence 

traits, consistent with clinical observation, genetic epidemiology and 
prior genetic studies of other SUD traits. In particular, we highlight 
the possible relationship revealed herein between CanUD and lung 
cancer risk. This study yields new insights into the genetic architec-
ture of CanUD and how this risk interacts with traits crucial to public 
health and raises important concerns regarding the potential adverse 
consequences of the secular trend toward increased cannabis use 
consequent to legalization.
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Methods
Inclusion and ethics statement
We included researchers from the iPSYCH biobank and the PGC, who 
played a role in study design. This research was not restricted or pro-
hibited in the setting of any of the included researchers. All studies 
were approved by local instituational research boards and ethics 
review committees. MVP was approved by the Veterans Affairs cen-
tral instituational research board. We do not believe our results will 
result in stigmatization, incrimination, discrimination or personal 
risk to participants.

Cohorts
We used data release version 4 of the MVP. Linked and de-identified 
EHRs were queried using the Veterans Affairs Informatics and Com-
puting Infrastructure to identify individuals with International Clas-
sification of Disease (ICD) codes for cannabis dependence or cannabis 
abuse (together, CanUD) (Supplementary Tables 2 and 3). The range 
of diagnosis dates was between May 1992 and December 2019. Two 
classifications were investigated: (1) cases identified by at least two 
separate outpatient visits or any number of inpatient visits to a US Vet-
erans Affairs (VA) medical center for CanUD and (2) cases identified by 
at least one inpatient or outpatient visit for CanUD. Genetic correlation 
analysis indicated that these traits were almost identical from a genetic 
perspective (rG = 0.99) and SNP-based heritability (h2) was not statisti-
cally different (definition 1, h2 = 0.075, s.e. 0.0053, z = 14.1; definition 2, 
h2 = 0.087, s.e. 0.0062, z = 14.0; Pdiff = 0.14), so case definition per the 
second classification was retained for further analysis (that is, at least 
one inpatient or outpatient visit). All individuals diagnosed under the 
first disease definition were also diagnosed under the second more 
inclusive definition. Controls were defined as individuals without any 
VA EHR ICD codes for cannabis dependence, cannabis abuse or can-
nabis use (cannabis use codes included in ICD-9: 305.29 and included 
in ICD-10: F12.90, F12.920, F12.921, F12.922, F12.929, F12.93, F12.950, 
F12.951, F12.959, F12.980, F12.988 and F12.99). The PGC cohort was 
as previously described and was made up of 16 cohorts with varying 
phenotype definitions and ascertainments10. A leave-one-out analysis 
was performed to remove the iPSYCH1 sample, leaving 18,370 cases and 
304,838 controls for European and African ancestries in the remaining 
PGC/deCODE sumstats. An updated expanded iPSYCH2 cohort was 
then added via meta-analysis (4,733 cases and 95,657 controls, all EUR). 
We also included samples from MGB Biobank (456 cases and 24,088 
controls, all EUR) and new data from the Yale–Penn cohort46 beyond 
the individuals already included in the PGC study (an additional 310 
cases and 1,471 controls for EUR, and 271 cases and 666 controls for 
AFR). Table 1 gives numbers for each cohort.

MVP genotyping, imputation, quality control, and GWAS and 
meta-analysis
Genotyping and imputation of MVP participants has been described 
previously11. Briefly, a customized Affymetrix Axiom Array was used 
for genotyping. MVP genotype data for biallelic SNPs were imputed 
using Minimac4 and a reference panel from the African Genome 
Resources panel by the Sanger Institute. Indels and complex variants 
were imputed independently using the 1000 Genomes (1KG) phase 3 
panel and merged in an approach similar to that employed by the UK 
Biobank. Designation of broad ancestries was based on genetic assign-
ment with comparison to 1KG reference panels47.

MVP GWAS was conducted using logistic regression in PLINK 2.0 
using the first ten positive controls, sex and age as covariates. Variants 
were excluded if call missingness in the best-guess genotype exceeded 
20%. Alleles with MAF <0.1% were excluded in EUR, AFR and AMR. Alleles 
with MAF <1% were removed from EAS due to smaller sample size. The 
MVP data represented the largest and most diverse cohort with 22,260 
cases and 423,587 controls (EUR), 14,946 cases and 97,580 controls 
(AFR), 2,774 cases and 35,515 controls (AMR) and 194 cases and 6,649 

controls (EAS) (Table 1). GWAS meta-analyses in the PGC datasets of the 
deCODE and PGC samples were conducted as previously described, 
although a leave-one-out analysis was conducted to remove data from 
iPSYCH1 so that a larger cohort could be independently analyzed10. This 
leave-one-out PGC meta-analysis contained 14,522 EUR cases and 298,941 
controls and 3,848 AFR cases with 5,897 controls. This study includes new 
genotypes from iPSYCH (referred to as iPSYCH2), and all iPSYCH data 
(iPSYCH1 + 2) has been reprocessed. Pre-imputation quality control and 
imputation were performed on genotypes from the full set of genotyped 
individuals for iPSYCH1 and iPSYCH2 separately, using standard proce-
dures for GWAS data. The iPSYCH1 samples were genotyped in 23 geno-
typing waves and thus additional steps were taken to eliminate potential 
batch effects. Only variants present in more than 20 waves and with no 
significant association with wave status were retained. Imputation was 
done using the pre-phasing/imputation stepwise approach implemented 
in EAGLE v2.3.548 and Minimac49, using the Haplotype Reference Con-
sortium50 panel v1.0. GWAS of 4,733 EUR cases and 95,657 controls and 
was done on a merged set of best-guess genotypes with MAF >0.01 and 
imputation info score >0.8 (in both iPSYCH1 and iPSYCH2) using logistic 
regression with appropriate covariates (age, sex, psychiatric diagnoses 
(attention deficit hyperactivity disorder, autism spectrum disorder, 
SCZ, bipolar disorder and MDD), first ten positive controls and iPSYCH 
cohort of origin). A new Yale–Penn tranche was analyzed using PLINK 
1.9 in unrelated individuals not previously included in any other GWAS 
or meta-analysis. This contributed 310 cases and 1,471 controls (EUR) 
and 271 cases and 666 controls (AFR). Finally, MGH Partners BioBank51 
contributed 456 cases and 24,088 controls (EUR).

EUR cohorts were combined in a GWAS meta-analysis (Table 1). For 
AFR, we performed meta-analysis between the MVP, PGC and Yale–Penn 
cohorts. For AMR and EAS, only MVP included data so no meta-analysis 
was possible within these ancestries. GWAS meta-analyses were con-
ducted using inverse variance weighing in METAL52 for both EUR and 
AFR. For within-ancestry meta-analyses, there were 42,281 EUR cases 
with 843,744 controls, and 19,065 AFR cases with 104,143 controls. 
The multi-ancestry meta-analysis53 included 1,044,620 total partici-
pants of EUR, AFR, AMR and EAS ancestries. Sex-stratified analysis 
was conducted in the only cohort available individual GWAS for the 
analysis—the MVP (Supplementary Fig. 7).

LDSC and SNP-based heritability
LDSC was used to calculate SNP-based heritability on the liability 
scale, using a lifetime population prevalence54 of 2% and a sample 
prevalence of 5% for EUR, 13.2% for AFR, and 7.2% for AMR within the 
MVP55. We used the lifetime population prevalence reported in the 
PGC/deCODE/iPSYCH1 cannabis paper10 for comparability. Typically, 
calculating SNP-based heritability depends on reliable reference ances-
try to account for nonindependence of some variance due to LD. This 
is easily done for EUR, but admixed non-European ancestries pose a 
statistical challenge. Covariate LDSC12 uses sample covariates such 
as those derived from principal components analysis (a dimension 
reduction technique that produces eigenvalues for each variant) car-
ried out in the study sample to adjust LD scores to enable calculation 
of SNP heritability in each ancestry using sample-specific LD scores. 
LDSC as implemented by the Complex Traits Genomics Virtual Lab56 
was used to estimate genetic correlations57 to identify common genetic 
architecture across all 1,335 traits available for comparison. Addition-
ally, LDSC was used to compare genetic correlations between CanUD 
and cannabis use (from a previously published study18).

Cross-ancestry genetic correlation
POPCORN19 was used to generate cross-ancestry covariance scores 
using 1KG reference panels from EUR and AFR. This method was applied 
to calculate genetic correlations between the AFR CanUD generated 
in this study against traits from Fig. 2 that had available allele frequen-
cies and n count.
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Mendelian randomization
Several traits with significant genetic correlation with CanUD and high 
public health importance were selected for follow-up MR analysis in EUR 
ancestry datasets (‘type of physical activity in the last four weeks = none’, 
multi-site chronic pain, Alzheimer’s disease, SCZ and lung cancer). These 
traits were first tested for polygenic overlap with CanUD; one trait did 
not survive this step (Alzheimer’s disease), and the remaining three traits 
moved on to MR analysis. MR was conducted using the TwoSampleMR 
package in R Studio58. We conducted MR Egger analysis to test for the 
effect of horizontal pleiotropy.

Conditional analysis
mtCOJO was carried out to study possible confounding of smoking for 
CanUD. GWAS summary statistics for smoking initiation and cigarettes 
per day from the GWAS and Sequencing Consortium of Alcohol and 
Nicotine use Phase 2 study of EUR ancestry were used for smoking20. 
The CanUD (target trait) GWAS data were conditioned on smoking 
initiation and cigarettes per day (covariate traits) GWAS data individu-
ally using the Genome-wide Complex Trait Analysis mtCOJO utility59. 
Output summary statistics from conditioned CanUD was then used to 
re-test the MR relationship between CanUD and lung cancer.

Transcriptome-wide association study
Transcriptome-wide association studies (TWAS) and FUSION60 software 
were employed to use variant–gene expression associations to enrich 
GWAS variant findings for genes involved with CanUD. The TWAS models 
were trained using prior published evidence for gene expression from 
adult brain cortex33 (1,695 samples; 14,750 models) and fetal brain frontal 
cortex34 (201 samples; 3,784 genes), with each gene having estimated 
positive cis-heritability at nominal P < 0.01 and the corresponding pre-
dictive model achieving five-fold cross-validation R2 > 0.01 at a nominal 
P < 0.01. Using a weighted burden test60, we generated a Wald-type Z 
score for each gene–trait association, with transcriptome-wide sig-
nificance defined at P < 2.5 × 10−6, the Bonferroni-corrected significance 
level across 20,000 tests. To ensure proper alignment to the genetic 
ancestry of the eQTL and GWAS cohorts, we use a reference panel from 
EUR individuals in 1KG61. The TWAS samples did not include any ascer-
tainment for CanUD in the brain tissue used for analysis.

For every transcriptome-wide significant gene–trait association, 
we conducted a permutation test by shuffling the SNP-gene weights in 
the prediction model 10,000 times60,62. This permutation generates a 
null distribution to compare to the original TWAS Z score to quantify the 
significance of the expression–trait associations conditional on the SNP–
trait effects at the locus60. For genes that passed both transcriptome-wide 
significance and the permutation test at P < 0.05 within 1 Mb of another 
significant gene, we conducted probabilistic gene-level fine-mapping 
using FOCUS to estimate 90% credible sets of genes that explain the trait 
association signal at a locus63. We conducted FOCUS fine-mapping across 
genes detected by models trained in either adult or fetal brain tissue.

Partitioned SNP-based heritability estimation
To assess differences in enrichment of SNP-based trait heritability in 
the regions around eQTLs of adult and fetal expression, we employed 
stratified LDSC61. Genes with at least one significant eQTL were des-
ignated ‘eGenes’. We generated LD score annotations for 500-bp win-
dows around lead eQTLs of eGenes from Genotype-Tissue Expression 
brain cortex (n = 205) and fetal brain frontal cortex (n = 201). We used 
Genotype-Tissue Expression to ensure similar sample sizes. We define 
the enrichment of SNP-based heritability as the proportion of herit-
ability explained by a set of SNPs in the annotation divided by the 
proportion of all SNPs included in the annotation.

gSEM
gSEM64 was used to perform EFA and CFA of CanUD and 14 additional 
traits of interest that were genetically correlated. For EFA, factor 

structures composed of one to ten factors were examined. EFA model 
fit was evaluated by the amount of cumulative variance explained by the 
overall factor structure, the SS loadings (SS loading ≥1) for each included 
factor and the proportion of explained variance accounted for by each of 
the individual factors (that is, ≥10%). Traits with EFA factor loadings ≥0.20 
were evaluated for optimal CFA model fit determined by conventional 
fit indices64. CFA models were estimated using diagonally weighted least 
squares estimation and a smoothed genetic covariance matrix. The 1KG 
phase 3 EUR reference panel was used for LD calculation47.

Multi-trait analysis of GWAS
We applied the MTAG method65 for the joint analysis of the genome-wide 
association statistics of CanUD (EUR meta-analysis from the present 
study), AUD (n = 167,721)66 and nicotine dependence (based on the 
FTND; n = 58,000)67. First, SNPs that were duplicated, had MAF ≤0.01 
or had strand ambiguity were removed from the GWAS datasets. Of 
the 14,768,834 SNPs available from the GWAS meta-analysis of CanUD, 
5,894,946 SNPs remained for the MTAG analysis after quality control. 
After the MTAG analysis with AUD and nicotine dependence, 3,540,940 
SNPs remained. Significant variants were defined at P < 5 × 10−8.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All MVP summary statistics are made available through dbGAP request 
under accession phs001672.v7.p1.
Meta-analysis summary statistics are available through the Gelernter 
lab website: https://medicine.yale.edu/lab/gelernter/.
Meta-analysis data will also be made available through the Complex 
Trait Genetics Virtual Lab: https://vl.genoma.io/.
Data for TWAS models used are available as follows:
TWAS models from Gandal et al 2018: https://gandallab.org/
lab_resources#:~:text=Gene%2Dlevel%20TWAS%20weights%C2%A0
eQTLs from GTEx 2020: https://storage.googleapis.com/gtex_analy-
sis_v8/single_tissue_qtl_data/GTEx_Analysis_v8_eQTL.tar
eQTLs from Walker et al 2019: https://www.cell.com/cms/10.1016/ 
j.cell.2019.09.021/attachment/a2b0432 3-f963-4714-8f6b-
81bc24e5bed1/mmc1.xlsx.

Code availability
Code for software and packages used in this analysis are all publicly 
available through the citations for each method as introduced.
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